$$$\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}\, dx$$$.

Çözüm

$$$u=2 x$$$ olsun.

Böylece $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{2}$$$ elde ederiz.

O halde,

$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(u \right)}}{2 \sin{\left(2 u \right)}} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}}$$$ ile uygula:

$${\color{red}{\int{\frac{\sin{\left(u \right)}}{2 \sin{\left(2 u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}} d u}}{2}\right)}}$$

Integrand fonksiyonunu yeniden yazın:

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\sin{\left(2 u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}}{2}$$

Kosinüsü, $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ formülünü kullanarak sinüs cinsinden yeniden yazın ve ardından sinüsü çift açı formülü $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$ kullanarak yeniden yazın.:

$$\frac{{\color{red}{\int{\frac{1}{2 \cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{4 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

Payı ve paydayı $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$ ile çarpın.:

$$\frac{{\color{red}{\int{\frac{1}{4 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{4 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}$$

$$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$ olsun.

Böylece $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (adımlar » görülebilir) ve $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$ elde ederiz.

Dolayısıyla,

$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{4 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2}$$

Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(v \right)} = \frac{1}{v}$$$ ile uygula:

$$\frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{2}$$

$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{4} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$

Hatırlayın ki $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{4}$$

Hatırlayın ki $$$u=2 x$$$:

$$\frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{4} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{4}$$

Dolayısıyla,

$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{4}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{4}+C$$

Cevap

$$$\int \frac{\sin{\left(2 x \right)}}{\sin{\left(4 x \right)}}\, dx = \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{4} + C$$$A


Please try a new game Rotatly