$$$\frac{1}{\sqrt{- a^{2} + x^{2}}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx$$$。
解答
令 $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$。
則 $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$。
因此,
$$$\frac{1}{\sqrt{- a^{2} + x^{2}}} = \frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}$$$
使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}=\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|}$$$
假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|} = \frac{1}{\sinh{\left( u \right)} \left|{a}\right|}$$$
因此,
$${\color{red}{\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
回顧一下 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}$$
因此,
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} + C$$$A