Integral dari $$$\frac{1}{\sqrt{- a^{2} + x^{2}}}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx$$$.
Solusi
Misalkan $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$.
Maka $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$.
Integran menjadi
$$$\frac{1}{\sqrt{- a^{2} + x^{2}}} = \frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}$$$
Gunakan identitas $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}=\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|}$$$
Dengan asumsi bahwa $$$\sinh{\left( u \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|} = \frac{1}{\sinh{\left( u \right)} \left|{a}\right|}$$$
Integral menjadi
$${\color{red}{\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Ingat bahwa $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}$$
Oleh karena itu,
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}+C$$
Jawaban
$$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} + C$$$A