Integral de $$$\frac{1}{\sqrt{- a^{2} + x^{2}}}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx$$$.
Solución
Sea $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$.
Entonces $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$ (los pasos pueden verse »).
Además, se sigue que $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$.
Entonces,
$$$\frac{1}{\sqrt{- a^{2} + x^{2}}} = \frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}$$$
Utiliza la identidad $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}=\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|}$$$
Suponiendo que $$$\sinh{\left( u \right)} \ge 0$$$, obtenemos lo siguiente:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|} = \frac{1}{\sinh{\left( u \right)} \left|{a}\right|}$$$
Entonces,
$${\color{red}{\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$
Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Recordemos que $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}$$
Por lo tanto,
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$
Añade la constante de integración:
$$\int{\frac{1}{\sqrt{- a^{2} + x^{2}}} d x} = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}+C$$
Respuesta
$$$\int \frac{1}{\sqrt{- a^{2} + x^{2}}}\, dx = \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} + C$$$A