$$$\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$ 的積分

此計算器將求出 $$$\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}\, d\theta$$$

三角函數的參數預設為弧度。若要以度為單位輸入,請將參數乘以 pi/180,例如將 45° 寫成 45*pi/180;或使用在函數名稱後加上 'd' 的對應函數,例如將 sin(45°) 寫成 sind(45)。

解答

套用常數倍法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$,使用 $$$c=\frac{\sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$$$$f{\left(\theta \right)} = \theta^{\frac{3}{2}}$$$

$${\color{red}{\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta}}} = {\color{red}{\frac{\sqrt{\sin{\left(2 \right)}} \int{\theta^{\frac{3}{2}} d \theta}}{\cos{\left(2 \right)}}}}$$

套用冪次法則 $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{3}{2}$$$

$$\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\int{\theta^{\frac{3}{2}} d \theta}}}}{\cos{\left(2 \right)}}=\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\frac{\theta^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}}{\cos{\left(2 \right)}}=\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\left(\frac{2 \theta^{\frac{5}{2}}}{5}\right)}}}{\cos{\left(2 \right)}}$$

因此,

$$\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta} = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}}$$

加上積分常數:

$$\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta} = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}}+C$$

答案

$$$\int \frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}\, d\theta = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}} + C$$$A


Please try a new game Rotatly