Intégrale de $$$\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}\, d\theta$$$.

Les fonctions trigonométriques attendent un argument en radians. Pour saisir l’argument en degrés, multipliez-le par pi/180, par exemple écrivez 45° sous la forme 45*pi/180, ou utilisez la fonction appropriée en ajoutant 'd', par exemple écrivez sin(45°) sous la forme sind(45).

Solution

Appliquez la règle du facteur constant $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ avec $$$c=\frac{\sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}$$$ et $$$f{\left(\theta \right)} = \theta^{\frac{3}{2}}$$$ :

$${\color{red}{\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta}}} = {\color{red}{\frac{\sqrt{\sin{\left(2 \right)}} \int{\theta^{\frac{3}{2}} d \theta}}{\cos{\left(2 \right)}}}}$$

Appliquer la règle de puissance $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=\frac{3}{2}$$$ :

$$\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\int{\theta^{\frac{3}{2}} d \theta}}}}{\cos{\left(2 \right)}}=\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\frac{\theta^{1 + \frac{3}{2}}}{1 + \frac{3}{2}}}}}{\cos{\left(2 \right)}}=\frac{\sqrt{\sin{\left(2 \right)}} {\color{red}{\left(\frac{2 \theta^{\frac{5}{2}}}{5}\right)}}}{\cos{\left(2 \right)}}$$

Par conséquent,

$$\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta} = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}}$$

Ajouter la constante d'intégration :

$$\int{\frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}} d \theta} = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}}+C$$

Réponse

$$$\int \frac{\theta^{\frac{3}{2}} \sqrt{\sin{\left(2 \right)}}}{\cos{\left(2 \right)}}\, d\theta = \frac{2 \theta^{\frac{5}{2}} \sqrt{\sin{\left(2 \right)}}}{5 \cos{\left(2 \right)}} + C$$$A


Please try a new game Rotatly