$$$\frac{1}{u^{2} - 2 u}$$$ 的積分

此計算器將求出 $$$\frac{1}{u^{2} - 2 u}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{u^{2} - 2 u}\, du$$$

解答

進行部分分式分解(步驟可見 »):

$${\color{red}{\int{\frac{1}{u^{2} - 2 u} d u}}} = {\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u} d u} + \int{\frac{1}{2 \left(u - 2\right)} d u}\right)}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u - 2}$$$

$$- \int{\frac{1}{2 u} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 2\right)} d u}}} = - \int{\frac{1}{2 u} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 2} d u}}{2}\right)}}$$

$$$v=u - 2$$$

$$$dv=\left(u - 2\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$

該積分可改寫為

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{u - 2} d u}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

回顧一下 $$$v=u - 2$$$

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u}$$$

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 u} d u}}} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

因此,

$$\int{\frac{1}{u^{2} - 2 u} d u} = - \frac{\ln{\left(\left|{u}\right| \right)}}{2} + \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2}$$

化簡:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}$$

加上積分常數:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}+C$$

答案

$$$\int \frac{1}{u^{2} - 2 u}\, du = \frac{- \ln\left(\left|{u}\right|\right) + \ln\left(\left|{u - 2}\right|\right)}{2} + C$$$A


Please try a new game Rotatly