Integral de $$$\frac{1}{u^{2} - 2 u}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{u^{2} - 2 u}\, du$$$.
Solución
Realizar la descomposición en fracciones parciales (los pasos pueden verse »):
$${\color{red}{\int{\frac{1}{u^{2} - 2 u} d u}}} = {\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}}$$
Integra término a término:
$${\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u} d u} + \int{\frac{1}{2 \left(u - 2\right)} d u}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u - 2}$$$:
$$- \int{\frac{1}{2 u} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 2\right)} d u}}} = - \int{\frac{1}{2 u} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 2} d u}}{2}\right)}}$$
Sea $$$v=u - 2$$$.
Entonces $$$dv=\left(u - 2\right)^{\prime }du = 1 du$$$ (los pasos pueden verse »), y obtenemos que $$$du = dv$$$.
La integral puede reescribirse como
$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{u - 2} d u}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Recordemos que $$$v=u - 2$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 u} d u}}} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
La integral de $$$\frac{1}{u}$$$ es $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Por lo tanto,
$$\int{\frac{1}{u^{2} - 2 u} d u} = - \frac{\ln{\left(\left|{u}\right| \right)}}{2} + \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2}$$
Simplificar:
$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}$$
Añade la constante de integración:
$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}+C$$
Respuesta
$$$\int \frac{1}{u^{2} - 2 u}\, du = \frac{- \ln\left(\left|{u}\right|\right) + \ln\left(\left|{u - 2}\right|\right)}{2} + C$$$A