$$$\frac{1}{u^{2} - 2 u}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{1}{u^{2} - 2 u}\, du$$$.
Çözüm
Kısmi kesirlere ayrıştırma yapın (adımlar » görülebilir):
$${\color{red}{\int{\frac{1}{u^{2} - 2 u} d u}}} = {\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}}$$
Her terimin integralini alın:
$${\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u} d u} + \int{\frac{1}{2 \left(u - 2\right)} d u}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{u - 2}$$$ ile uygula:
$$- \int{\frac{1}{2 u} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 2\right)} d u}}} = - \int{\frac{1}{2 u} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 2} d u}}{2}\right)}}$$
$$$v=u - 2$$$ olsun.
Böylece $$$dv=\left(u - 2\right)^{\prime }du = 1 du$$$ (adımlar » görülebilir) ve $$$du = dv$$$ elde ederiz.
İntegral şu hale gelir
$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{u - 2} d u}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Hatırlayın ki $$$v=u - 2$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 u} d u}}} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Dolayısıyla,
$$\int{\frac{1}{u^{2} - 2 u} d u} = - \frac{\ln{\left(\left|{u}\right| \right)}}{2} + \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2}$$
Sadeleştirin:
$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}+C$$
Cevap
$$$\int \frac{1}{u^{2} - 2 u}\, du = \frac{- \ln\left(\left|{u}\right|\right) + \ln\left(\left|{u - 2}\right|\right)}{2} + C$$$A