$$$\frac{1}{u^{2} - 2 u}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{u^{2} - 2 u}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{u^{2} - 2 u}\, du$$$.

Çözüm

Kısmi kesirlere ayrıştırma yapın (adımlar » görülebilir):

$${\color{red}{\int{\frac{1}{u^{2} - 2 u} d u}}} = {\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u} d u} + \int{\frac{1}{2 \left(u - 2\right)} d u}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{u - 2}$$$ ile uygula:

$$- \int{\frac{1}{2 u} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 2\right)} d u}}} = - \int{\frac{1}{2 u} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 2} d u}}{2}\right)}}$$

$$$v=u - 2$$$ olsun.

Böylece $$$dv=\left(u - 2\right)^{\prime }du = 1 du$$$ (adımlar » görülebilir) ve $$$du = dv$$$ elde ederiz.

İntegral şu hale gelir

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{u - 2} d u}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Hatırlayın ki $$$v=u - 2$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 u} d u}}} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Dolayısıyla,

$$\int{\frac{1}{u^{2} - 2 u} d u} = - \frac{\ln{\left(\left|{u}\right| \right)}}{2} + \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2}$$

Sadeleştirin:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}+C$$

Cevap

$$$\int \frac{1}{u^{2} - 2 u}\, du = \frac{- \ln\left(\left|{u}\right|\right) + \ln\left(\left|{u - 2}\right|\right)}{2} + C$$$A


Please try a new game Rotatly