Integrale di $$$\frac{1}{u^{2} - 2 u}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{u^{2} - 2 u}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{u^{2} - 2 u}\, du$$$.

Soluzione

Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):

$${\color{red}{\int{\frac{1}{u^{2} - 2 u} d u}}} = {\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(\frac{1}{2 \left(u - 2\right)} - \frac{1}{2 u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{2 u} d u} + \int{\frac{1}{2 \left(u - 2\right)} d u}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u - 2}$$$:

$$- \int{\frac{1}{2 u} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 2\right)} d u}}} = - \int{\frac{1}{2 u} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 2} d u}}{2}\right)}}$$

Sia $$$v=u - 2$$$.

Quindi $$$dv=\left(u - 2\right)^{\prime }du = 1 du$$$ (i passaggi si possono vedere »), e si ha che $$$du = dv$$$.

Quindi,

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{u - 2} d u}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

L'integrale di $$$\frac{1}{v}$$$ è $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 u} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Ricordiamo che $$$v=u - 2$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 2\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 u} d u}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 u} d u}}} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Pertanto,

$$\int{\frac{1}{u^{2} - 2 u} d u} = - \frac{\ln{\left(\left|{u}\right| \right)}}{2} + \frac{\ln{\left(\left|{u - 2}\right| \right)}}{2}$$

Semplifica:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{u^{2} - 2 u} d u} = \frac{- \ln{\left(\left|{u}\right| \right)} + \ln{\left(\left|{u - 2}\right| \right)}}{2}+C$$

Risposta

$$$\int \frac{1}{u^{2} - 2 u}\, du = \frac{- \ln\left(\left|{u}\right|\right) + \ln\left(\left|{u - 2}\right|\right)}{2} + C$$$A


Please try a new game Rotatly