$$$\frac{1}{e^{x} - 1}$$$ 的積分
您的輸入
求$$$\int \frac{1}{e^{x} - 1}\, dx$$$。
解答
令 $$$u=e^{x}$$$。
則 $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (步驟見»),並可得 $$$e^{x} dx = du$$$。
所以,
$${\color{red}{\int{\frac{1}{e^{x} - 1} d x}}} = {\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}$$
進行部分分式分解(步驟可見 »):
$${\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}} = {\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}$$
令 $$$v=u - 1$$$。
則 $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$。
該積分可改寫為
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = - \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}} = - \int{\frac{1}{u} d u} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
回顧一下 $$$v=u - 1$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} - \int{\frac{1}{u} d u} = \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)} - \int{\frac{1}{u} d u}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=e^{x}$$$:
$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{-1 + {\color{red}{e^{x}}}}\right| \right)} - \ln{\left(\left|{{\color{red}{e^{x}}}}\right| \right)}$$
因此,
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}$$
加上積分常數:
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}+C$$
答案
$$$\int \frac{1}{e^{x} - 1}\, dx = \left(- x + \ln\left(\left|{e^{x} - 1}\right|\right)\right) + C$$$A