Ολοκλήρωμα του $$$\frac{1}{e^{x} - 1}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{e^{x} - 1}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{e^{x} - 1}\, dx$$$.

Λύση

Έστω $$$u=e^{x}$$$.

Τότε $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$e^{x} dx = du$$$.

Το ολοκλήρωμα γίνεται

$${\color{red}{\int{\frac{1}{e^{x} - 1} d x}}} = {\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}$$

Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):

$${\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}} = {\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}$$

Έστω $$$v=u - 1$$$.

Τότε $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = dv$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = - \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}}$$

Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}} = - \int{\frac{1}{u} d u} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Θυμηθείτε ότι $$$v=u - 1$$$:

$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} - \int{\frac{1}{u} d u} = \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)} - \int{\frac{1}{u} d u}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=e^{x}$$$:

$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{-1 + {\color{red}{e^{x}}}}\right| \right)} - \ln{\left(\left|{{\color{red}{e^{x}}}}\right| \right)}$$

Επομένως,

$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}+C$$

Απάντηση

$$$\int \frac{1}{e^{x} - 1}\, dx = \left(- x + \ln\left(\left|{e^{x} - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly