Ολοκλήρωμα του $$$\frac{1}{e^{x} - 1}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{e^{x} - 1}\, dx$$$.
Λύση
Έστω $$$u=e^{x}$$$.
Τότε $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$e^{x} dx = du$$$.
Το ολοκλήρωμα γίνεται
$${\color{red}{\int{\frac{1}{e^{x} - 1} d x}}} = {\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}$$
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$${\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}} = {\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}$$
Έστω $$$v=u - 1$$$.
Τότε $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = dv$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = - \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}}$$
Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}} = - \int{\frac{1}{u} d u} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Θυμηθείτε ότι $$$v=u - 1$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} - \int{\frac{1}{u} d u} = \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)} - \int{\frac{1}{u} d u}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=e^{x}$$$:
$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{-1 + {\color{red}{e^{x}}}}\right| \right)} - \ln{\left(\left|{{\color{red}{e^{x}}}}\right| \right)}$$
Επομένως,
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}+C$$
Απάντηση
$$$\int \frac{1}{e^{x} - 1}\, dx = \left(- x + \ln\left(\left|{e^{x} - 1}\right|\right)\right) + C$$$A