Integral dari $$$\frac{1}{e^{x} - 1}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{e^{x} - 1}\, dx$$$.
Solusi
Misalkan $$$u=e^{x}$$$.
Kemudian $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$e^{x} dx = du$$$.
Integralnya menjadi
$${\color{red}{\int{\frac{1}{e^{x} - 1} d x}}} = {\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}$$
Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):
$${\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}} = {\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}$$
Integralkan suku demi suku:
$${\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}$$
Misalkan $$$v=u - 1$$$.
Kemudian $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = dv$$$.
Jadi,
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = - \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}}$$
Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}} = - \int{\frac{1}{u} d u} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$
Ingat bahwa $$$v=u - 1$$$:
$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} - \int{\frac{1}{u} d u} = \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)} - \int{\frac{1}{u} d u}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Ingat bahwa $$$u=e^{x}$$$:
$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{-1 + {\color{red}{e^{x}}}}\right| \right)} - \ln{\left(\left|{{\color{red}{e^{x}}}}\right| \right)}$$
Oleh karena itu,
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}+C$$
Jawaban
$$$\int \frac{1}{e^{x} - 1}\, dx = \left(- x + \ln\left(\left|{e^{x} - 1}\right|\right)\right) + C$$$A