$$$\left(x - 3\right)^{5}$$$ 的積分
您的輸入
求$$$\int \left(x - 3\right)^{5}\, dx$$$。
解答
令 $$$u=x - 3$$$。
則 $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分變為
$${\color{red}{\int{\left(x - 3\right)^{5} d x}}} = {\color{red}{\int{u^{5} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=5$$$:
$${\color{red}{\int{u^{5} d u}}}={\color{red}{\frac{u^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
回顧一下 $$$u=x - 3$$$:
$$\frac{{\color{red}{u}}^{6}}{6} = \frac{{\color{red}{\left(x - 3\right)}}^{6}}{6}$$
因此,
$$\int{\left(x - 3\right)^{5} d x} = \frac{\left(x - 3\right)^{6}}{6}$$
加上積分常數:
$$\int{\left(x - 3\right)^{5} d x} = \frac{\left(x - 3\right)^{6}}{6}+C$$
答案
$$$\int \left(x - 3\right)^{5}\, dx = \frac{\left(x - 3\right)^{6}}{6} + C$$$A