Integrale di $$$\left(x - 3\right)^{5}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(x - 3\right)^{5}\, dx$$$.
Soluzione
Sia $$$u=x - 3$$$.
Quindi $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.
L'integrale diventa
$${\color{red}{\int{\left(x - 3\right)^{5} d x}}} = {\color{red}{\int{u^{5} d u}}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:
$${\color{red}{\int{u^{5} d u}}}={\color{red}{\frac{u^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
Ricordiamo che $$$u=x - 3$$$:
$$\frac{{\color{red}{u}}^{6}}{6} = \frac{{\color{red}{\left(x - 3\right)}}^{6}}{6}$$
Pertanto,
$$\int{\left(x - 3\right)^{5} d x} = \frac{\left(x - 3\right)^{6}}{6}$$
Aggiungi la costante di integrazione:
$$\int{\left(x - 3\right)^{5} d x} = \frac{\left(x - 3\right)^{6}}{6}+C$$
Risposta
$$$\int \left(x - 3\right)^{5}\, dx = \frac{\left(x - 3\right)^{6}}{6} + C$$$A