$$$\frac{\sin{\left(x \right)}}{x + 1}$$$ 的積分
您的輸入
求$$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx$$$。
解答
令 $$$u=x + 1$$$。
則 $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分可改寫為
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{x + 1} d x}}} = {\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}}$$
重寫被積函數:
$${\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}}$$
Expand the expression:
$${\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = {\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}\right)}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\cos{\left(1 \right)}$$$ 與 $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$:
$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\cos{\left(1 \right)} \int{\frac{\sin{\left(u \right)}}{u} d u}}}$$
此積分(正弦積分)不存在閉式表示:
$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\sin{\left(1 \right)}$$$ 與 $$$f{\left(u \right)} = \frac{\cos{\left(u \right)}}{u}$$$:
$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos{\left(u \right)}}{u} d u}}}$$
此積分(餘弦積分)不存在閉式表示:
$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\operatorname{Ci}{\left(u \right)}}}$$
回顧一下 $$$u=x + 1$$$:
$$- \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{u}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{u}} \right)} = - \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{\left(x + 1\right)}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{\left(x + 1\right)}} \right)}$$
因此,
$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}$$
加上積分常數:
$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}+C$$
答案
$$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx = \left(- \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}\right) + C$$$A