Ολοκλήρωμα του $$$\frac{\sin{\left(x \right)}}{x + 1}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\sin{\left(x \right)}}{x + 1}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx$$$.

Λύση

Έστω $$$u=x + 1$$$.

Τότε $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{x + 1} d x}}} = {\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}}$$

Ξαναγράψτε την ολοκληρωτέα συνάρτηση:

$${\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = {\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\cos{\left(1 \right)}$$$ και $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$:

$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\cos{\left(1 \right)} \int{\frac{\sin{\left(u \right)}}{u} d u}}}$$

Αυτό το ολοκλήρωμα (Ημιτονοειδές ολοκλήρωμα) δεν έχει κλειστή μορφή:

$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\operatorname{Si}{\left(u \right)}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\sin{\left(1 \right)}$$$ και $$$f{\left(u \right)} = \frac{\cos{\left(u \right)}}{u}$$$:

$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos{\left(u \right)}}{u} d u}}}$$

Αυτό το ολοκλήρωμα (Ολοκλήρωμα συνημιτόνου) δεν έχει κλειστή μορφή:

$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\operatorname{Ci}{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=x + 1$$$:

$$- \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{u}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{u}} \right)} = - \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{\left(x + 1\right)}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{\left(x + 1\right)}} \right)}$$

Επομένως,

$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}+C$$

Απάντηση

$$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx = \left(- \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}\right) + C$$$A


Please try a new game Rotatly