$$$\frac{\sin{\left(x \right)}}{x + 1}$$$の積分

この計算機は、手順を示しながら$$$\frac{\sin{\left(x \right)}}{x + 1}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx$$$ を求めよ。

解答

$$$u=x + 1$$$ とする。

すると $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

積分は次のようになります

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{x + 1} d x}}} = {\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}}$$

被積分関数を書き換える:

$${\color{red}{\int{\frac{\sin{\left(u - 1 \right)}}{u} d u}}} = {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)} - \sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = {\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} - \frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}\right)}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\cos{\left(1 \right)}$$$$$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$ に対して適用する:

$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\int{\frac{\sin{\left(u \right)} \cos{\left(1 \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + {\color{red}{\cos{\left(1 \right)} \int{\frac{\sin{\left(u \right)}}{u} d u}}}$$

この積分(正弦積分)には閉形式はありません:

$$- \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = - \int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u} + \cos{\left(1 \right)} {\color{red}{\operatorname{Si}{\left(u \right)}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\sin{\left(1 \right)}$$$$$$f{\left(u \right)} = \frac{\cos{\left(u \right)}}{u}$$$ に対して適用する:

$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\int{\frac{\sin{\left(1 \right)} \cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos{\left(u \right)}}{u} d u}}}$$

この積分(余弦積分)には閉形式はありません:

$$\cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\int{\frac{\cos{\left(u \right)}}{u} d u}}} = \cos{\left(1 \right)} \operatorname{Si}{\left(u \right)} - \sin{\left(1 \right)} {\color{red}{\operatorname{Ci}{\left(u \right)}}}$$

次のことを思い出してください $$$u=x + 1$$$:

$$- \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{u}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{u}} \right)} = - \sin{\left(1 \right)} \operatorname{Ci}{\left({\color{red}{\left(x + 1\right)}} \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left({\color{red}{\left(x + 1\right)}} \right)}$$

したがって、

$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}$$

積分定数を加える:

$$\int{\frac{\sin{\left(x \right)}}{x + 1} d x} = - \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}+C$$

解答

$$$\int \frac{\sin{\left(x \right)}}{x + 1}\, dx = \left(- \sin{\left(1 \right)} \operatorname{Ci}{\left(x + 1 \right)} + \cos{\left(1 \right)} \operatorname{Si}{\left(x + 1 \right)}\right) + C$$$A


Please try a new game Rotatly