$$$e^{2}$$$ 的二階導數
您的輸入
求$$$\frac{d^{2}}{de^{2}} \left(e^{2}\right)$$$。
解答
求第一階導數 $$$\frac{d}{de} \left(e^{2}\right)$$$
套用冪次法則 $$$\frac{d}{de} \left(e^{n}\right) = n e^{n - 1}$$$,取 $$$n = 2$$$:
$${\color{red}\left(\frac{d}{de} \left(e^{2}\right)\right)} = {\color{red}\left(2 e\right)}$$因此,$$$\frac{d}{de} \left(e^{2}\right) = 2 e$$$。
接下來,$$$\frac{d^{2}}{de^{2}} \left(e^{2}\right) = \frac{d}{de} \left(2 e\right)$$$
套用常數倍法則 $$$\frac{d}{de} \left(c f{\left(e \right)}\right) = c \frac{d}{de} \left(f{\left(e \right)}\right)$$$,使用 $$$c = 2$$$ 與 $$$f{\left(e \right)} = e$$$:
$${\color{red}\left(\frac{d}{de} \left(2 e\right)\right)} = {\color{red}\left(2 \frac{d}{de} \left(e\right)\right)}$$套用冪次法則 $$$\frac{d}{de} \left(e^{n}\right) = n e^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{de} \left(e\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{de} \left(e\right)\right)} = 2 {\color{red}\left(1\right)}$$因此,$$$\frac{d}{de} \left(2 e\right) = 2$$$。
因此,$$$\frac{d^{2}}{de^{2}} \left(e^{2}\right) = 2$$$。
答案
$$$\frac{d^{2}}{de^{2}} \left(e^{2}\right) = 2$$$A
Please try a new game Rotatly