$$$e^{x^{3}}$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(e^{x^{3}}\right)$$$。
解答
函數 $$$e^{x^{3}}$$$ 是兩個函數 $$$f{\left(u \right)} = e^{u}$$$ 與 $$$g{\left(x \right)} = x^{3}$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$。
應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x^{3}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(x^{3}\right)\right)}$$指數函數的導數為 $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(x^{3}\right)$$返回原變數:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(x^{3}\right) = e^{{\color{red}\left(x^{3}\right)}} \frac{d}{dx} \left(x^{3}\right)$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 3$$$:
$$e^{x^{3}} {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = e^{x^{3}} {\color{red}\left(3 x^{2}\right)}$$因此,$$$\frac{d}{dx} \left(e^{x^{3}}\right) = 3 x^{2} e^{x^{3}}$$$。
答案
$$$\frac{d}{dx} \left(e^{x^{3}}\right) = 3 x^{2} e^{x^{3}}$$$A
Please try a new game Rotatly