$$$3368 \ln\left(4\right)$$$ 的积分
您的输入
求$$$\int 3368 \ln\left(4\right)\, dx$$$。
解答
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=3368 \ln{\left(4 \right)}$$$:
$${\color{red}{\int{3368 \ln{\left(4 \right)} d x}}} = {\color{red}{\left(3368 x \ln{\left(4 \right)}\right)}}$$
因此,
$$\int{3368 \ln{\left(4 \right)} d x} = 3368 x \ln{\left(4 \right)}$$
化简:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}$$
加上积分常数:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}+C$$
答案
$$$\int 3368 \ln\left(4\right)\, dx = 6736 x \ln\left(2\right) + C$$$A
Please try a new game Rotatly