Integral of $$$3368 \ln\left(4\right)$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 3368 \ln\left(4\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3368 \ln{\left(4 \right)}$$$:
$${\color{red}{\int{3368 \ln{\left(4 \right)} d x}}} = {\color{red}{\left(3368 x \ln{\left(4 \right)}\right)}}$$
Therefore,
$$\int{3368 \ln{\left(4 \right)} d x} = 3368 x \ln{\left(4 \right)}$$
Simplify:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}$$
Add the constant of integration:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}+C$$
Answer
$$$\int 3368 \ln\left(4\right)\, dx = 6736 x \ln\left(2\right) + C$$$A