$$$3368 \ln\left(4\right)$$$の積分
入力内容
$$$\int 3368 \ln\left(4\right)\, dx$$$ を求めよ。
解答
$$$c=3368 \ln{\left(4 \right)}$$$ に対して定数則 $$$\int c\, dx = c x$$$ を適用する:
$${\color{red}{\int{3368 \ln{\left(4 \right)} d x}}} = {\color{red}{\left(3368 x \ln{\left(4 \right)}\right)}}$$
したがって、
$$\int{3368 \ln{\left(4 \right)} d x} = 3368 x \ln{\left(4 \right)}$$
簡単化せよ:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}$$
積分定数を加える:
$$\int{3368 \ln{\left(4 \right)} d x} = 6736 x \ln{\left(2 \right)}+C$$
解答
$$$\int 3368 \ln\left(4\right)\, dx = 6736 x \ln\left(2\right) + C$$$A
Please try a new game Rotatly