$$$\sqrt{\frac{1 - x}{x}}$$$ 的积分

该计算器将求出$$$\sqrt{\frac{1 - x}{x}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sqrt{\frac{1 - x}{x}}\, dx$$$

解答

输入已重写为:$$$\int{\sqrt{\frac{1 - x}{x}} d x}=\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x}$$$

$$$u=\sqrt{x}$$$

$$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步骤见»),并有$$$\frac{dx}{\sqrt{x}} = 2 du$$$

因此,

$${\color{red}{\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}}$$

$$$c=2$$$$$$f{\left(u \right)} = \sqrt{1 - u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}} = {\color{red}{\left(2 \int{\sqrt{1 - u^{2}} d u}\right)}}$$

$$$u=\sin{\left(v \right)}$$$

$$$du=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv$$$(步骤见»)。

此外,可得$$$v=\operatorname{asin}{\left(u \right)}$$$

所以,

$$$\sqrt{1 - u ^{2}} = \sqrt{1 - \sin^{2}{\left( v \right)}}$$$

利用恒等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$

$$$\sqrt{1 - \sin^{2}{\left( v \right)}}=\sqrt{\cos^{2}{\left( v \right)}}$$$

假设$$$\cos{\left( v \right)} \ge 0$$$,我们得到如下结果:

$$$\sqrt{\cos^{2}{\left( v \right)}} = \cos{\left( v \right)}$$$

积分变为

$$2 {\color{red}{\int{\sqrt{1 - u^{2}} d u}}} = 2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}}$$

应用降幂公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,并令 $$$\alpha= v $$$:

$$2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cos{\left(2 v \right)} + 1$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$

$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$

逐项积分:

$${\color{red}{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}} = {\color{red}{\left(\int{1 d v} + \int{\cos{\left(2 v \right)} d v}\right)}}$$

应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$

$$\int{\cos{\left(2 v \right)} d v} + {\color{red}{\int{1 d v}}} = \int{\cos{\left(2 v \right)} d v} + {\color{red}{v}}$$

$$$w=2 v$$$

$$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (步骤见»),并有$$$dv = \frac{dw}{2}$$$

所以,

$$v + {\color{red}{\int{\cos{\left(2 v \right)} d v}}} = v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(w \right)} = \cos{\left(w \right)}$$$ 应用常数倍法则 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$

$$v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}} = v + {\color{red}{\left(\frac{\int{\cos{\left(w \right)} d w}}{2}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$

$$v + \frac{{\color{red}{\int{\cos{\left(w \right)} d w}}}}{2} = v + \frac{{\color{red}{\sin{\left(w \right)}}}}{2}$$

回忆一下 $$$w=2 v$$$:

$$v + \frac{\sin{\left({\color{red}{w}} \right)}}{2} = v + \frac{\sin{\left({\color{red}{\left(2 v\right)}} \right)}}{2}$$

回忆一下 $$$v=\operatorname{asin}{\left(u \right)}$$$:

$$\frac{\sin{\left(2 {\color{red}{v}} \right)}}{2} + {\color{red}{v}} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(u \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(u \right)}}}$$

回忆一下 $$$u=\sqrt{x}$$$:

$$\frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{u}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{u}} \right)} = \frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)}$$

因此,

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(\sqrt{x} \right)} \right)}}{2} + \operatorname{asin}{\left(\sqrt{x} \right)}$$

使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化简该表达式:

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}$$

加上积分常数:

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}+C$$

答案

$$$\int \sqrt{\frac{1 - x}{x}}\, dx = \left(\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}\right) + C$$$A


Please try a new game Rotatly