Integral de $$$\sqrt{\frac{1 - x}{x}}$$$

La calculadora encontrará la integral/antiderivada de $$$\sqrt{\frac{1 - x}{x}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \sqrt{\frac{1 - x}{x}}\, dx$$$.

Solución

La entrada se reescribe: $$$\int{\sqrt{\frac{1 - x}{x}} d x}=\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x}$$$.

Sea $$$u=\sqrt{x}$$$.

Entonces $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Por lo tanto,

$${\color{red}{\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ y $$$f{\left(u \right)} = \sqrt{1 - u^{2}}$$$:

$${\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}} = {\color{red}{\left(2 \int{\sqrt{1 - u^{2}} d u}\right)}}$$

Sea $$$u=\sin{\left(v \right)}$$$.

Entonces $$$du=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv$$$ (los pasos pueden verse »).

Además, se sigue que $$$v=\operatorname{asin}{\left(u \right)}$$$.

Por lo tanto,

$$$\sqrt{1 - u ^{2}} = \sqrt{1 - \sin^{2}{\left( v \right)}}$$$

Utiliza la identidad $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:

$$$\sqrt{1 - \sin^{2}{\left( v \right)}}=\sqrt{\cos^{2}{\left( v \right)}}$$$

Suponiendo que $$$\cos{\left( v \right)} \ge 0$$$, obtenemos lo siguiente:

$$$\sqrt{\cos^{2}{\left( v \right)}} = \cos{\left( v \right)}$$$

Entonces,

$$2 {\color{red}{\int{\sqrt{1 - u^{2}} d u}}} = 2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}}$$

Aplica la fórmula de reducción de potencia $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ con $$$\alpha= v $$$:

$$2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$

Aplica la regla del factor constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(v \right)} = \cos{\left(2 v \right)} + 1$$$:

$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$

Integra término a término:

$${\color{red}{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}} = {\color{red}{\left(\int{1 d v} + \int{\cos{\left(2 v \right)} d v}\right)}}$$

Aplica la regla de la constante $$$\int c\, dv = c v$$$ con $$$c=1$$$:

$$\int{\cos{\left(2 v \right)} d v} + {\color{red}{\int{1 d v}}} = \int{\cos{\left(2 v \right)} d v} + {\color{red}{v}}$$

Sea $$$w=2 v$$$.

Entonces $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (los pasos pueden verse »), y obtenemos que $$$dv = \frac{dw}{2}$$$.

Entonces,

$$v + {\color{red}{\int{\cos{\left(2 v \right)} d v}}} = v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}}$$

Aplica la regla del factor constante $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(w \right)} = \cos{\left(w \right)}$$$:

$$v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}} = v + {\color{red}{\left(\frac{\int{\cos{\left(w \right)} d w}}{2}\right)}}$$

La integral del coseno es $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:

$$v + \frac{{\color{red}{\int{\cos{\left(w \right)} d w}}}}{2} = v + \frac{{\color{red}{\sin{\left(w \right)}}}}{2}$$

Recordemos que $$$w=2 v$$$:

$$v + \frac{\sin{\left({\color{red}{w}} \right)}}{2} = v + \frac{\sin{\left({\color{red}{\left(2 v\right)}} \right)}}{2}$$

Recordemos que $$$v=\operatorname{asin}{\left(u \right)}$$$:

$$\frac{\sin{\left(2 {\color{red}{v}} \right)}}{2} + {\color{red}{v}} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(u \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(u \right)}}}$$

Recordemos que $$$u=\sqrt{x}$$$:

$$\frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{u}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{u}} \right)} = \frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{\sqrt{x}}} \right)}$$

Por lo tanto,

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(\sqrt{x} \right)} \right)}}{2} + \operatorname{asin}{\left(\sqrt{x} \right)}$$

Usando las fórmulas $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifica la expresión:

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}$$

Añade la constante de integración:

$$\int{\frac{\sqrt{1 - x}}{\sqrt{x}} d x} = \sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}+C$$

Respuesta

$$$\int \sqrt{\frac{1 - x}{x}}\, dx = \left(\sqrt{x} \sqrt{1 - x} + \operatorname{asin}{\left(\sqrt{x} \right)}\right) + C$$$A


Please try a new game Rotatly