$$$\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}\, dx$$$

解答

改写被积函数:

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{4 \sin^{2}{\left(y \right)} \cos{\left(x \right)} \cos{\left(y \right)} d x}}}$$

$$$c=4 \sin^{2}{\left(y \right)} \cos{\left(y \right)}$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{4 \sin^{2}{\left(y \right)} \cos{\left(x \right)} \cos{\left(y \right)} d x}}} = {\color{red}{\left(4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} \int{\cos{\left(x \right)} d x}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} {\color{red}{\sin{\left(x \right)}}}$$

因此,

$$\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x} = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)}$$

加上积分常数:

$$\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x} = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)}+C$$

答案

$$$\int \frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}\, dx = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)} + C$$$A


Please try a new game Rotatly