Integralen av $$$\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}\, dx$$$.

Lösning

Skriv om integranden:

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{4 \sin^{2}{\left(y \right)} \cos{\left(x \right)} \cos{\left(y \right)} d x}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=4 \sin^{2}{\left(y \right)} \cos{\left(y \right)}$$$ och $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$${\color{red}{\int{4 \sin^{2}{\left(y \right)} \cos{\left(x \right)} \cos{\left(y \right)} d x}}} = {\color{red}{\left(4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} \int{\cos{\left(x \right)} d x}\right)}}$$

Integralen av cosinus är $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} {\color{red}{\int{\cos{\left(x \right)} d x}}} = 4 \sin^{2}{\left(y \right)} \cos{\left(y \right)} {\color{red}{\sin{\left(x \right)}}}$$

Alltså,

$$\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x} = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}} d x} = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)}+C$$

Svar

$$$\int \frac{\sin{\left(2 x \right)} \sin{\left(y \right)} \sin{\left(2 y \right)}}{\sin{\left(x \right)}}\, dx = 4 \sin{\left(x \right)} \sin^{2}{\left(y \right)} \cos{\left(y \right)} + C$$$A


Please try a new game Rotatly