$$$f^{2} x^{2} e^{x}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int f^{2} x^{2} e^{x}\, dx$$$。
解答
对 $$$c=f^{2}$$$ 和 $$$f{\left(x \right)} = x^{2} e^{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{f^{2} x^{2} e^{x} d x}}} = {\color{red}{f^{2} \int{x^{2} e^{x} d x}}}$$
对于积分$$$\int{x^{2} e^{x} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x^{2}$$$ 和 $$$\operatorname{dv}=e^{x} dx$$$。
则 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (步骤见 »)。
因此,
$$f^{2} {\color{red}{\int{x^{2} e^{x} d x}}}=f^{2} {\color{red}{\left(x^{2} \cdot e^{x}-\int{e^{x} \cdot 2 x d x}\right)}}=f^{2} {\color{red}{\left(x^{2} e^{x} - \int{2 x e^{x} d x}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = x e^{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$f^{2} \left(x^{2} e^{x} - {\color{red}{\int{2 x e^{x} d x}}}\right) = f^{2} \left(x^{2} e^{x} - {\color{red}{\left(2 \int{x e^{x} d x}\right)}}\right)$$
对于积分$$$\int{x e^{x} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=x$$$ 和 $$$\operatorname{dv}=e^{x} dx$$$。
则 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (步骤见 »)。
所以,
$$f^{2} \left(x^{2} e^{x} - 2 {\color{red}{\int{x e^{x} d x}}}\right)=f^{2} \left(x^{2} e^{x} - 2 {\color{red}{\left(x \cdot e^{x}-\int{e^{x} \cdot 1 d x}\right)}}\right)=f^{2} \left(x^{2} e^{x} - 2 {\color{red}{\left(x e^{x} - \int{e^{x} d x}\right)}}\right)$$
指数函数的积分为 $$$\int{e^{x} d x} = e^{x}$$$:
$$f^{2} \left(x^{2} e^{x} - 2 x e^{x} + 2 {\color{red}{\int{e^{x} d x}}}\right) = f^{2} \left(x^{2} e^{x} - 2 x e^{x} + 2 {\color{red}{e^{x}}}\right)$$
因此,
$$\int{f^{2} x^{2} e^{x} d x} = f^{2} \left(x^{2} e^{x} - 2 x e^{x} + 2 e^{x}\right)$$
化简:
$$\int{f^{2} x^{2} e^{x} d x} = f^{2} \left(x^{2} - 2 x + 2\right) e^{x}$$
加上积分常数:
$$\int{f^{2} x^{2} e^{x} d x} = f^{2} \left(x^{2} - 2 x + 2\right) e^{x}+C$$
答案
$$$\int f^{2} x^{2} e^{x}\, dx = f^{2} \left(x^{2} - 2 x + 2\right) e^{x} + C$$$A