$$$e^{9 x} \cos{\left(x \right)}$$$ 的积分

该计算器将求出$$$e^{9 x} \cos{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int e^{9 x} \cos{\left(x \right)}\, dx$$$

解答

对于积分$$$\int{e^{9 x} \cos{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\cos{\left(x \right)}$$$$$$\operatorname{dv}=e^{9 x} dx$$$

$$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{9 x} d x}=\frac{e^{9 x}}{9}$$$ (步骤见 »)。

该积分可以改写为

$${\color{red}{\int{e^{9 x} \cos{\left(x \right)} d x}}}={\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{9 x}}{9}-\int{\frac{e^{9 x}}{9} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}={\color{red}{\left(\frac{e^{9 x} \cos{\left(x \right)}}{9} - \int{\left(- \frac{e^{9 x} \sin{\left(x \right)}}{9}\right)d x}\right)}}$$

$$$c=- \frac{1}{9}$$$$$$f{\left(x \right)} = e^{9 x} \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{e^{9 x} \cos{\left(x \right)}}{9} - {\color{red}{\int{\left(- \frac{e^{9 x} \sin{\left(x \right)}}{9}\right)d x}}} = \frac{e^{9 x} \cos{\left(x \right)}}{9} - {\color{red}{\left(- \frac{\int{e^{9 x} \sin{\left(x \right)} d x}}{9}\right)}}$$

对于积分$$$\int{e^{9 x} \sin{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\sin{\left(x \right)}$$$$$$\operatorname{dv}=e^{9 x} dx$$$

$$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{9 x} d x}=\frac{e^{9 x}}{9}$$$ (步骤见 »)。

所以,

$$\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\int{e^{9 x} \sin{\left(x \right)} d x}}}}{9}=\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{9 x}}{9}-\int{\frac{e^{9 x}}{9} \cdot \cos{\left(x \right)} d x}\right)}}}{9}=\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\left(\frac{e^{9 x} \sin{\left(x \right)}}{9} - \int{\frac{e^{9 x} \cos{\left(x \right)}}{9} d x}\right)}}}{9}$$

$$$c=\frac{1}{9}$$$$$$f{\left(x \right)} = e^{9 x} \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{{\color{red}{\int{\frac{e^{9 x} \cos{\left(x \right)}}{9} d x}}}}{9} = \frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{{\color{red}{\left(\frac{\int{e^{9 x} \cos{\left(x \right)} d x}}{9}\right)}}}{9}$$

我们得到了一个之前见过的积分。

因此,我们得到了关于该积分的如下简单等式:

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{\int{e^{9 x} \cos{\left(x \right)} d x}}{81}$$

解得

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}$$

因此,

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}$$

加上积分常数:

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}+C$$

答案

$$$\int e^{9 x} \cos{\left(x \right)}\, dx = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82} + C$$$A


Please try a new game Rotatly