Ολοκλήρωμα του $$$e^{9 x} \cos{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$e^{9 x} \cos{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{9 x} \cos{\left(x \right)}\, dx$$$.

Λύση

Για το ολοκλήρωμα $$$\int{e^{9 x} \cos{\left(x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\cos{\left(x \right)}$$$ και $$$\operatorname{dv}=e^{9 x} dx$$$.

Τότε $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{9 x} d x}=\frac{e^{9 x}}{9}$$$ (τα βήματα φαίνονται »).

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{e^{9 x} \cos{\left(x \right)} d x}}}={\color{red}{\left(\cos{\left(x \right)} \cdot \frac{e^{9 x}}{9}-\int{\frac{e^{9 x}}{9} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}={\color{red}{\left(\frac{e^{9 x} \cos{\left(x \right)}}{9} - \int{\left(- \frac{e^{9 x} \sin{\left(x \right)}}{9}\right)d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=- \frac{1}{9}$$$ και $$$f{\left(x \right)} = e^{9 x} \sin{\left(x \right)}$$$:

$$\frac{e^{9 x} \cos{\left(x \right)}}{9} - {\color{red}{\int{\left(- \frac{e^{9 x} \sin{\left(x \right)}}{9}\right)d x}}} = \frac{e^{9 x} \cos{\left(x \right)}}{9} - {\color{red}{\left(- \frac{\int{e^{9 x} \sin{\left(x \right)} d x}}{9}\right)}}$$

Για το ολοκλήρωμα $$$\int{e^{9 x} \sin{\left(x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\sin{\left(x \right)}$$$ και $$$\operatorname{dv}=e^{9 x} dx$$$.

Τότε $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{9 x} d x}=\frac{e^{9 x}}{9}$$$ (τα βήματα φαίνονται »).

Επομένως,

$$\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\int{e^{9 x} \sin{\left(x \right)} d x}}}}{9}=\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\left(\sin{\left(x \right)} \cdot \frac{e^{9 x}}{9}-\int{\frac{e^{9 x}}{9} \cdot \cos{\left(x \right)} d x}\right)}}}{9}=\frac{e^{9 x} \cos{\left(x \right)}}{9} + \frac{{\color{red}{\left(\frac{e^{9 x} \sin{\left(x \right)}}{9} - \int{\frac{e^{9 x} \cos{\left(x \right)}}{9} d x}\right)}}}{9}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{9}$$$ και $$$f{\left(x \right)} = e^{9 x} \cos{\left(x \right)}$$$:

$$\frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{{\color{red}{\int{\frac{e^{9 x} \cos{\left(x \right)}}{9} d x}}}}{9} = \frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{{\color{red}{\left(\frac{\int{e^{9 x} \cos{\left(x \right)} d x}}{9}\right)}}}{9}$$

Φτάσαμε σε ένα ολοκλήρωμα που έχουμε ήδη δει.

Έτσι, καταλήξαμε στην ακόλουθη απλή εξίσωση ως προς το ολοκλήρωμα:

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{e^{9 x} \sin{\left(x \right)}}{81} + \frac{e^{9 x} \cos{\left(x \right)}}{9} - \frac{\int{e^{9 x} \cos{\left(x \right)} d x}}{81}$$

Λύνοντάς το, προκύπτει ότι

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}$$

Επομένως,

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{9 x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82}+C$$

Απάντηση

$$$\int e^{9 x} \cos{\left(x \right)}\, dx = \frac{\left(\sin{\left(x \right)} + 9 \cos{\left(x \right)}\right) e^{9 x}}{82} + C$$$A


Please try a new game Rotatly