$$$\frac{1}{a^{2} x^{2}}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{1}{a^{2} x^{2}}\, dx$$$。
解答
对 $$$c=\frac{1}{a^{2}}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{1}{a^{2} x^{2}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{a^{2}}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{a^{2}}=\frac{{\color{red}{\int{x^{-2} d x}}}}{a^{2}}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{a^{2}}$$
因此,
$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}$$
加上积分常数:
$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}+C$$
答案
$$$\int \frac{1}{a^{2} x^{2}}\, dx = - \frac{1}{a^{2} x} + C$$$A