Ολοκλήρωμα της $$$\frac{1}{a^{2} x^{2}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{a^{2} x^{2}}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{a^{2}}$$$ και $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{1}{a^{2} x^{2}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{a^{2}}}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{a^{2}}=\frac{{\color{red}{\int{x^{-2} d x}}}}{a^{2}}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{a^{2}}$$
Επομένως,
$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}+C$$
Απάντηση
$$$\int \frac{1}{a^{2} x^{2}}\, dx = - \frac{1}{a^{2} x} + C$$$A