$$$\frac{1}{a^{2} x^{2}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{1}{a^{2} x^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{a^{2} x^{2}}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{a^{2}}$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ に対して適用する:

$${\color{red}{\int{\frac{1}{a^{2} x^{2}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{a^{2}}}}$$

$$$n=-2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{a^{2}}=\frac{{\color{red}{\int{x^{-2} d x}}}}{a^{2}}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{a^{2}}$$

したがって、

$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}$$

積分定数を加える:

$$\int{\frac{1}{a^{2} x^{2}} d x} = - \frac{1}{a^{2} x}+C$$

解答

$$$\int \frac{1}{a^{2} x^{2}}\, dx = - \frac{1}{a^{2} x} + C$$$A


Please try a new game Rotatly