$$$\frac{1}{a^{2} t^{2}}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \frac{1}{a^{2} t^{2}}\, dt$$$。
解答
对 $$$c=\frac{1}{a^{2}}$$$ 和 $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$${\color{red}{\int{\frac{1}{a^{2} t^{2}} d t}}} = {\color{red}{\frac{\int{\frac{1}{t^{2}} d t}}{a^{2}}}}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{t^{2}} d t}}}}{a^{2}}=\frac{{\color{red}{\int{t^{-2} d t}}}}{a^{2}}=\frac{{\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- t^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{t}\right)}}}{a^{2}}$$
因此,
$$\int{\frac{1}{a^{2} t^{2}} d t} = - \frac{1}{a^{2} t}$$
加上积分常数:
$$\int{\frac{1}{a^{2} t^{2}} d t} = - \frac{1}{a^{2} t}+C$$
答案
$$$\int \frac{1}{a^{2} t^{2}}\, dt = - \frac{1}{a^{2} t} + C$$$A