$$$t$$$ değişkenine göre $$$\frac{1}{a^{2} t^{2}}$$$ fonksiyonunun integrali

Hesaplayıcı, $$$t$$$ değişkenine göre $$$\frac{1}{a^{2} t^{2}}$$$ fonksiyonunun integralini/antitürevini bulur ve adım adım gösterir.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{a^{2} t^{2}}\, dt$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$'i $$$c=\frac{1}{a^{2}}$$$ ve $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{1}{a^{2} t^{2}} d t}}} = {\color{red}{\frac{\int{\frac{1}{t^{2}} d t}}{a^{2}}}}$$

Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$\frac{{\color{red}{\int{\frac{1}{t^{2}} d t}}}}{a^{2}}=\frac{{\color{red}{\int{t^{-2} d t}}}}{a^{2}}=\frac{{\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- t^{-1}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{t}\right)}}}{a^{2}}$$

Dolayısıyla,

$$\int{\frac{1}{a^{2} t^{2}} d t} = - \frac{1}{a^{2} t}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{a^{2} t^{2}} d t} = - \frac{1}{a^{2} t}+C$$

Cevap

$$$\int \frac{1}{a^{2} t^{2}}\, dt = - \frac{1}{a^{2} t} + C$$$A


Please try a new game Rotatly