$$$- \sec^{2}{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx$$$。
解答
对 $$$c=-1$$$ 和 $$$f{\left(x \right)} = \sec^{2}{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(- \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
$$$\sec^{2}{\left(x \right)}$$$ 的积分为 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - {\color{red}{\tan{\left(x \right)}}}$$
因此,
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}$$
加上积分常数:
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}+C$$
答案
$$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx = - \tan{\left(x \right)} + C$$$A