Integral of $$$- \sec^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
The integral of $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - {\color{red}{\tan{\left(x \right)}}}$$
Therefore,
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}+C$$
Answer
$$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx = - \tan{\left(x \right)} + C$$$A