Integral dari $$$- \sec^{2}{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=-1$$$ dan $$$f{\left(x \right)} = \sec^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \sec^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
Integral dari $$$\sec^{2}{\left(x \right)}$$$ adalah $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - {\color{red}{\tan{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\left(- \sec^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)}+C$$
Jawaban
$$$\int \left(- \sec^{2}{\left(x \right)}\right)\, dx = - \tan{\left(x \right)} + C$$$A