$$$\cot^{2}{\left(x \right)} - 1$$$ 的积分
您的输入
求$$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\cot^{2}{\left(x \right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\cot^{2}{\left(x \right)} d x} - {\color{red}{x}}$$
设$$$u=\cot{\left(x \right)}$$$。
则$$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (步骤见»),并有$$$\csc^{2}{\left(x \right)} dx = - du$$$。
因此,
$$- x + {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
改写并拆分该分式:
$$- x - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
逐项积分:
$$- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - x - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = - x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u - x + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u - x + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
回忆一下 $$$u=\cot{\left(x \right)}$$$:
$$- x + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = - x + \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$
因此,
$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$
加上积分常数:
$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$
答案
$$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A