Integrale di $$$\cot^{2}{\left(x \right)} - 1$$$

La calcolatrice troverà l'integrale/primitiva di $$$\cot^{2}{\left(x \right)} - 1$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\cot^{2}{\left(x \right)} d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\cot^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

Sia $$$u=\cot{\left(x \right)}$$$.

Quindi $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\csc^{2}{\left(x \right)} dx = - du$$$.

Pertanto,

$$- x + {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Riscrivi e separa la frazione:

$$- x - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integra termine per termine:

$$- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - x - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = - x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

L'integrale di $$$\frac{1}{u^{2} + 1}$$$ è $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u - x + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u - x + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Ricordiamo che $$$u=\cot{\left(x \right)}$$$:

$$- x + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = - x + \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$

Pertanto,

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$

Aggiungi la costante di integrazione:

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$

Risposta

$$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A


Please try a new game Rotatly