Ολοκλήρωμα του $$$\cot^{2}{\left(x \right)} - 1$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\cot^{2}{\left(x \right)} - 1$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\cot^{2}{\left(x \right)} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:

$$\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\cot^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

Έστω $$$u=\cot{\left(x \right)}$$$.

Τότε $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\csc^{2}{\left(x \right)} dx = - du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$- x + {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Επαναγράψτε και διασπάστε το κλάσμα:

$$- x - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Ολοκληρώστε όρο προς όρο:

$$- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - x - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:

$$- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = - x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

Το ολοκλήρωμα του $$$\frac{1}{u^{2} + 1}$$$ είναι $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u - x + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u - x + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=\cot{\left(x \right)}$$$:

$$- x + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = - x + \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$

Επομένως,

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$

Απάντηση

$$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A


Please try a new game Rotatly