Integral dari $$$\cot^{2}{\left(x \right)} - 1$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\cot^{2}{\left(x \right)} - 1$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\cot^{2}{\left(x \right)} d x}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:

$$\int{\cot^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = \int{\cot^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

Misalkan $$$u=\cot{\left(x \right)}$$$.

Kemudian $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\csc^{2}{\left(x \right)} dx = - du$$$.

Dengan demikian,

$$- x + {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = - x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$- x + {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Tulis ulang dan pisahkan pecahannya:

$$- x - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integralkan suku demi suku:

$$- x - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - x - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:

$$- x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = - x + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

Integral dari $$$\frac{1}{u^{2} + 1}$$$ adalah $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u - x + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u - x + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Ingat bahwa $$$u=\cot{\left(x \right)}$$$:

$$- x + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = - x + \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$

Oleh karena itu,

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$

Tambahkan konstanta integrasi:

$$\int{\left(\cot^{2}{\left(x \right)} - 1\right)d x} = - x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$

Jawaban

$$$\int \left(\cot^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A


Please try a new game Rotatly