$$$\frac{x}{1 - x}$$$ 的积分
您的输入
求$$$\int \frac{x}{1 - x}\, dx$$$。
解答
将被积函数的分子改写为 $$$x=-1\left(1 - x\right)+1$$$,并将分式拆分:
$${\color{red}{\int{\frac{x}{1 - x} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - x}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(-1 + \frac{1}{1 - x}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{1 - x} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{\frac{1}{1 - x} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{1 - x} d x} - {\color{red}{x}}$$
设$$$u=1 - x$$$。
则$$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (步骤见»),并有$$$dx = - du$$$。
因此,
$$- x + {\color{red}{\int{\frac{1}{1 - x} d x}}} = - x + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- x + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x - {\color{red}{\int{\frac{1}{u} d u}}} = - x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=1 - x$$$:
$$- x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)}$$
因此,
$$\int{\frac{x}{1 - x} d x} = - x - \ln{\left(\left|{x - 1}\right| \right)}$$
加上积分常数:
$$\int{\frac{x}{1 - x} d x} = - x - \ln{\left(\left|{x - 1}\right| \right)}+C$$
答案
$$$\int \frac{x}{1 - x}\, dx = \left(- x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A