Integral of $$$\frac{x}{1 - x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{x}{1 - x}\, dx$$$.
Solution
Rewrite the numerator of the integrand as $$$x=-1\left(1 - x\right)+1$$$ and split the fraction:
$${\color{red}{\int{\frac{x}{1 - x} d x}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - x}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(-1 + \frac{1}{1 - x}\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{1}{1 - x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{\frac{1}{1 - x} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{1}{1 - x} d x} - {\color{red}{x}}$$
Let $$$u=1 - x$$$.
Then $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
Therefore,
$$- x + {\color{red}{\int{\frac{1}{1 - x} d x}}} = - x + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$- x + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = - x + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x - {\color{red}{\int{\frac{1}{u} d u}}} = - x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=1 - x$$$:
$$- x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - x - \ln{\left(\left|{{\color{red}{\left(1 - x\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{x}{1 - x} d x} = - x - \ln{\left(\left|{x - 1}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{x}{1 - x} d x} = - x - \ln{\left(\left|{x - 1}\right| \right)}+C$$
Answer
$$$\int \frac{x}{1 - x}\, dx = \left(- x - \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A