$$$\csc^{2}{\left(x \right)}$$$的导数

该计算器将求$$$\csc^{2}{\left(x \right)}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right)$$$

解答

函数$$$\csc^{2}{\left(x \right)}$$$是两个函数$$$f{\left(u \right)} = u^{2}$$$$$$g{\left(x \right)} = \csc{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)}$$

应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right)$$

返回到原变量:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) = 2 {\color{red}\left(\csc{\left(x \right)}\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right)$$

余割函数的导数为$$$\frac{d}{dx} \left(\csc{\left(x \right)}\right) = - \cot{\left(x \right)} \csc{\left(x \right)}$$$

$$2 \csc{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)} = 2 \csc{\left(x \right)} {\color{red}\left(- \cot{\left(x \right)} \csc{\left(x \right)}\right)}$$

因此,$$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$

答案

$$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$A


Please try a new game Rotatly