Afgeleide van $$$\csc^{2}{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right)$$$.
Oplossing
De functie $$$\csc^{2}{\left(x \right)}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = u^{2}$$$ en $$$g{\left(x \right)} = \csc{\left(x \right)}$$$.
Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:
$${\color{red}\left(\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)}$$Pas de machtsregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ toe met $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right)$$Keer terug naar de oorspronkelijke variabele:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right) = 2 {\color{red}\left(\csc{\left(x \right)}\right)} \frac{d}{dx} \left(\csc{\left(x \right)}\right)$$De afgeleide van de cosecans is $$$\frac{d}{dx} \left(\csc{\left(x \right)}\right) = - \cot{\left(x \right)} \csc{\left(x \right)}$$$:
$$2 \csc{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\csc{\left(x \right)}\right)\right)} = 2 \csc{\left(x \right)} {\color{red}\left(- \cot{\left(x \right)} \csc{\left(x \right)}\right)}$$Dus, $$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$.
Antwoord
$$$\frac{d}{dx} \left(\csc^{2}{\left(x \right)}\right) = - 2 \cot{\left(x \right)} \csc^{2}{\left(x \right)}$$$A