$$$2 \sec{\left(x \right)}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(2 \sec{\left(x \right)}\right)$$$。
解答
对 $$$c = 2$$$ 和 $$$f{\left(x \right)} = \sec{\left(x \right)}$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 \sec{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)}$$正割函数的导数为 $$$\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)}$$因此,$$$\frac{d}{dx} \left(2 \sec{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec{\left(x \right)}$$$。
答案
$$$\frac{d}{dx} \left(2 \sec{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec{\left(x \right)}$$$A
Please try a new game Rotatly