$$$\frac{1}{1 - x}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right)$$$。
解答
函数$$$\frac{1}{1 - x}$$$是两个函数$$$f{\left(u \right)} = \frac{1}{u}$$$和$$$g{\left(x \right)} = 1 - x$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{1 - x}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(1 - x\right)\right)}$$应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = -1$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(1 - x\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(1 - x\right)$$返回到原变量:
$$- \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(1 - x\right)}^{2}}$$和/差的导数等于导数的和/差:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1 - x\right)\right)}}{\left(1 - x\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x\right)\right)}}{\left(1 - x\right)^{2}}$$常数的导数是$$$0$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} - \frac{d}{dx} \left(x\right)}{\left(1 - x\right)^{2}} = - \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)}{\left(1 - x\right)^{2}}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left(1 - x\right)^{2}} = \frac{{\color{red}\left(1\right)}}{\left(1 - x\right)^{2}}$$化简:
$$\frac{1}{\left(1 - x\right)^{2}} = \frac{1}{\left(x - 1\right)^{2}}$$因此,$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right) = \frac{1}{\left(x - 1\right)^{2}}$$$。
答案
$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right) = \frac{1}{\left(x - 1\right)^{2}}$$$A