$$$\frac{1}{1 - x}$$$ 的導數

此計算器將求出 $$$\frac{1}{1 - x}$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right)$$$

解答

函數 $$$\frac{1}{1 - x}$$$ 是兩個函數 $$$f{\left(u \right)} = \frac{1}{u}$$$$$$g{\left(x \right)} = 1 - x$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{1 - x}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(1 - x\right)\right)}$$

套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = -1$$$

$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(1 - x\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(1 - x\right)$$

返回原變數:

$$- \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(1 - x\right)}^{2}}$$

和/差的導數等於導數的和/差:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1 - x\right)\right)}}{\left(1 - x\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x\right)\right)}}{\left(1 - x\right)^{2}}$$

常數的導數為$$$0$$$

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} - \frac{d}{dx} \left(x\right)}{\left(1 - x\right)^{2}} = - \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)}{\left(1 - x\right)^{2}}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left(1 - x\right)^{2}} = \frac{{\color{red}\left(1\right)}}{\left(1 - x\right)^{2}}$$

化簡:

$$\frac{1}{\left(1 - x\right)^{2}} = \frac{1}{\left(x - 1\right)^{2}}$$

因此,$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right) = \frac{1}{\left(x - 1\right)^{2}}$$$

答案

$$$\frac{d}{dx} \left(\frac{1}{1 - x}\right) = \frac{1}{\left(x - 1\right)^{2}}$$$A


Please try a new game Rotatly