$$$\sqrt{x}$$$'nin ikinci türevi

Hesaplayıcı, adımları göstererek $$$\sqrt{x}$$$'in ikinci türevini bulacaktır.

İlgili hesaplayıcılar: Türev Hesaplayıcı, Logaritmik Türev Hesaplayıcı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right)$$$.

Çözüm

Birinci türevi bulun $$$\frac{d}{dx} \left(\sqrt{x}\right)$$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = \frac{1}{2}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\sqrt{x}\right) = \frac{1}{2 \sqrt{x}}$$$.

Ardından, $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = \frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right)$$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \frac{1}{2}$$$ ve $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)}{2}\right)}$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = - \frac{1}{2}$$$ ile uygula:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)}}{2} = \frac{{\color{red}\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)}}{2}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\frac{1}{2 \sqrt{x}}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$.

Dolayısıyla, $$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$.

Cevap

$$$\frac{d^{2}}{dx^{2}} \left(\sqrt{x}\right) = - \frac{1}{4 x^{\frac{3}{2}}}$$$A


Please try a new game Rotatly